Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor.

نویسندگان

  • Farouc A Jaffer
  • Dong-Eog Kim
  • Luisa Quinti
  • Ching-Hsuan Tung
  • Elena Aikawa
  • Ashvin N Pande
  • Rainer H Kohler
  • Guo-Ping Shi
  • Peter Libby
  • Ralph Weissleder
چکیده

BACKGROUND Cathepsin K (CatK), a potent elastinolytic and collagenolytic cysteine protease, likely participates in the evolution and destabilization of atherosclerotic plaques. To assess better the biology of CatK activity in vivo, we developed a novel near-infrared fluorescence (NIRF) probe for imaging of CatK and evaluated it in mouse and human atherosclerosis. METHODS AND RESULTS The NIRF imaging agent consists of the CatK peptide substrate GHPGGPQGKC-NH2 linked to an activatable fluorogenic polymer. In vitro, CatK produced a 2- to 14-fold activation of the agent over other cysteine and matrix metalloproteinases (P<0.0001), as well as a >8-fold activation over a control imaging agent (P<0.001). Optical imaging of atheroma revealed >100% NIRF signal increases in apolipoprotein E-/- mice in vivo (n=13; P<0.05, CatK imaging agent versus control agent) and in human carotid endarterectomy specimens ex vivo (n=14; P<0.05). Fluorescence microscopy of plaque sections demonstrated that enzymatically active CatK (positive NIRF signal) localized primarily in the vicinity of CatK-positive macrophages. Augmented NIRF signal (reflecting CatK activity) colocalized with disrupted elastin fibers within the media underlying plaques. CONCLUSIONS Use of this novel protease-activatable NIRF agent for optical imaging in vivo demonstrated preferential localization of enzymatically active CatK to macrophages, consistent with their known greater elastinolytic capabilities compared with smooth muscle cells. Augmented CatK proteolysis in atheromata further links CatK to vascular remodeling and plaque vulnerability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis.

BACKGROUND To enable intravascular detection of inflammation in atherosclerosis, we developed a near-infrared fluorescence (NIRF) catheter-based strategy to sense cysteine protease activity during vascular catheterization. METHODS AND RESULTS The NIRF catheter design was based on a clinical coronary artery guidewire. In phantom studies of NIRF plaques, blood produced only a mild (<30%) attenu...

متن کامل

Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct.

Inflammatory responses after myocardial infarction profoundly impact tissue repair. Yet, efficient tools to serially and noninvasively assess cellular and molecular functions in postinfarct inflammation are lacking. Here we use multichannel fluorescent molecular tomography (FMT) for spatiotemporal resolution of phagocytic and proteolytic activities mediated by macrophages and neutrophils in mur...

متن کامل

Integrative Physiology/Eperimental Medicine Hybrid In Vivo FMT-CT Imaging of Protease Activity in Atherosclerosis With Customized Nanosensors

Objective—Proteases are emerging biomarkers of inflammatory diseases. In atherosclerosis, these enzymes are often secreted by inflammatory macrophages, digest the extracellular matrix of the fibrous cap, and destabilize atheromata. Protease function can be monitored with protease activatable imaging probes and quantitated in vivo by fluorescence molecular tomography (FMT). To address 2 major co...

متن کامل

Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors.

OBJECTIVE Proteases are emerging biomarkers of inflammatory diseases. In atherosclerosis, these enzymes are often secreted by inflammatory macrophages, digest the extracellular matrix of the fibrous cap, and destabilize atheromata. Protease function can be monitored with protease activatable imaging probes and quantitated in vivo by fluorescence molecular tomography (FMT). To address 2 major co...

متن کامل

Non-invasive optical detection of cathepsin K-mediated fluorescence reveals osteoclast activity in vitro and in vivo.

Osteoclasts degrade bone matrix by demineralization followed by degradation of type I collagen through secretion of the cysteine protease, cathepsin K. Current imaging modalities are insufficient for sensitive observation of osteoclast activity, and in vivo live imaging of osteoclast resorption of bone has yet to be demonstrated. Here, we describe a near-infrared fluorescence reporter probe who...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 115 17  شماره 

صفحات  -

تاریخ انتشار 2007